
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Analyzing the Time Complexity of RSA Encryption

Cracking Using the Brute Force Method

Ikhwan Al Hakim - 135221471

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522147@std.stei.itb.ac.id

Abstract—This research paper investigates the time complexity

of brute force attacks on RSA encryption, a pivotal public-key

cryptographic algorithm widely used for securing digital

communication. Focusing on the difficulty of factoring the product

of large prime numbers, the study employs mathematical models

and simulations to analyze the impact of key bit size on the

feasibility of brute force decryption. The examination includes

various key sizes, ranging from 2 bit to 20 bit.

Keywords— Brute force, Prime numbers, RSA encryption, Time

complexity.

I. INTRODUCTION

RSA encryption is widely regarded as one of the most secure

encryption algorithms in use today. Developed by Ron Rivest,

Adi Shamir, and Leonard Adleman in 1977, RSA (Rivest-

Shamir-Adleman) relies on the mathematical complexity of

factoring the product of two large prime numbers, making it

resistant to attacks by classical computers. The security of RSA

encryption is based on the assumption that factoring the product

of two large primes is a computationally infeasible task. The

algorithm plays a crucial role in securing digital communication,

including online transactions, data transmission, and secure

communication protocols. Its strength lies in the difficulty of

deducing the private key from the public key, ensuring a robust

level of security for sensitive information.

While RSA encryption has long been considered highly

secure, recent advancements in computing have raised concerns

about its long-term resilience. The algorithm’s strength relies on

the difficulty of factoring the product of two large prime

numbers, a task that becomes increasingly computationally

intensive as the size of the primes grows. While it is currently

deemed practically impossible for classical computers to

efficiently factor the product within a reasonable timeframe, the

rise of quantum computing poses a potential threat. Quantum

computers, leveraging principles of quantum mechanics, have

the potential to exponentially speed up certain calculations,

including factoring large numbers. This development could, in

theory, undermine the security of RSA encryption by efficiently

solving the underlying mathematical problem.

For that reason, this paper is made to calculate what is the

exact time complexity to brute force an RSA encryption. Brute

force is a straightforward and exhaustive approach to problem-

solving that relies on systematically trying all possible solutions

until the correct one is found. It is a general problem-solving

technique that can be applied to a wide range of problems,

particularly in the fields of computer science, cryptography, and

mathematics.

In the context of algorithms and computer science, a brute

force algorithm typically involves checking all possible

combinations or solutions to a problem without using any

optimization or heuristics to narrow down the search space.

While this method is simple and guarantees a solution, it can be

highly inefficient, especially for problems with large solution

spaces, as it requires evaluating a vast number of possibilities.

II. THEORETICAL BASIS

A. RSA Encryption

RSA (Rivest-Shamir-Adleman) is a widely used public-key

cryptosystem that enables secure communication over an

insecure channel. It was invented by Ron Rivest, Adi Shamir,

and Leonard Adleman in 1977 and remains one of the most

highly secure encryption algorithms.

The RSA algorithm involves two keys: a public key and a

private key. These keys are mathematically related but

computationally infeasible to derive from one another. The

public key can be freely distributed, while the private key must

be kept secret.

These are the processes to generate an RSA key:

1. Choose two large prime numbers, namely 𝑝 and 𝑞.

2. Compute the multiplication between them, let 𝑛 =
𝑝 × 𝑞.

3. Calculate 𝜙(𝑛) = (𝑝 − 1) × (𝑞 − 1), where 𝜙 is the

Euler’s totient function.

4. Choose a number 𝑒 that is coprime with 𝜙(𝑛).
5. Compute a number 𝑑 such that 𝑑𝑒 ≡ 1 (mod 𝜙(𝑛)).

The public key is 𝑒 and the private key is 𝑑.

B. Time Complexity
Time complexity is a key parameter used to evaluate the

computational efficiency of algorithms. It allows researchers
and practitioners to make informed decisions about algorithm

selection based on the expected behavior of the algorithm as the
input size increases. The notation employed for time
complexity, commonly known as Big O notation, provides a
concise representation of an algorithm’s worst-case time
complexity. By expressing the upper bound of an algorithm’s

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

running time in terms of a mathematical function, Big O
notation facilitates a high-level understanding of an algorithm’s
scalability.

Time complexity is formally defined as the function 𝑇(𝑛),
representing the maximum amount of computational time

required by an algorithm for an input of size 𝑛. In Big O
notation, denoted as 𝑂(𝑓(𝑛)), the focus is on characterizing the

upper bound of 𝑇(𝑛) as 𝑛 approaches infinity. The notation
𝑂(𝑓(𝑛)) implies that the running time of the algorithm does not

grow faster than a constant multiple of 𝑓(𝑛) for sufficiently
large 𝑛.
Below are the example of Big O notation and their respective
graph mapping:

1. Constant Time (𝑂(1)): The running time of the
algorithm remains constant regardless of the input size.
Simple operations like accessing an element in an array
fall into this category.

2. Linear Time (𝑂(𝑛)): The running time of the algorithm
grows linearly with the input size. Example of this
category is iterating through an entire element of an

array or a list.
3. Logarithmic Time (𝑂(log 𝑛)): The running time of the

algorithm grows logarithmically with the input size.

4. Linearithmic Time (𝑂(𝑛 log𝑛)): This time complexity
is common in some efficient sorting algorithms like
Merge Sort and Heap Sort.

5. Quadratic Time (𝑂(𝑛2)): The running time is
proportional to the square of the input size. This is often
seen in nested loops.

6. Exponential Time (𝑂(𝑘𝑛)): The running time grows
exponentially with the input size. Algorithms with this
complexity are generally impractical for large inputs.

7. Factorial Time (𝑂(𝑛!)): This time complexity is

relatively uncommon in practical algorithms due to its
rapid growth rate. In most cases, factorial time
complexity is associated with naive or brute-force
algorithms that exhaustively generate all possible
permutations or combinations of a set.

Figure 1. Time Complexity Graph

Source: https://www.freecodecamp.org/news/big-o-cheat-sheet-time-

complexity-chart/

C. Brute Force

Brute force is a deterministic and exhaustive technique

utilized across diverse domains to systematically explore and

evaluate all possible options until the correct solution is

discovered. One prominent application of brute force is in the

realm of cybersecurity, particularly in password cracking

attempts. In this context, attackers employ brute force to

systematically test every conceivable password combination in

an effort to gain unauthorized access to a system. The success of

such attacks hinges on factors like the strength of passwords and

the computational resources available to the attacker. While

brute force might be a less sophisticated approach compared to

more intricate hacking techniques, it can prove effective,

especially when dealing with weak or easily guessable

passwords.

Cryptography also frequently encounters brute force,

particularly in decryption attempts. In cryptographic systems, a

brute force attack involves systematically trying all possible

decryption keys until the correct one is found. The efficacy of

this method depends on the encryption algorithm’s complexity

and the length of the encryption key. Robust encryption

algorithms with longer keys significantly raise the difficulty

level for successfully executing a brute force attack, rendering

them more resilient against unauthorized decryption attempts.

Cryptographers continually strive to develop encryption

methods that withstand brute force attacks, emphasizing the

importance of key length and algorithmic intricacy in ensuring

data security.

While brute force methods offer a straightforward and

conceptually simple approach to problem-solving, they are not

always the most efficient or practical solutions. In certain

scenarios, the solution space may be vast, leading to a time-

consuming and resource-intensive process. In computer science,

brute force algorithms may be employed to solve problems by

systematically considering all potential solutions. However,

more optimized algorithms, leveraging specific characteristics

of the problem, are often favored for their efficiency,

particularly in large-scale or complex problem domains. Thus,

while brute force remains a viable strategy in certain contexts,

its limitations underscore the importance of developing and

implementing more sophisticated methods to tackle intricate

challenges effectively.

III. METHODOLOGY

Before the author explain any of the method used in this
research, it should be noted that the experiment is done in the
following hardware specifications:

• Processor: AMD Ryzen 7 5800HS 3.2GHz

• RAM: 16 GB

A. Generating the Prime Numbers

First, there is the need to define the bit size of the prime

numbers. Because the experiment is done in a small

environment and a not-so-good hardware, the author only able

to generate the prime numbers in the size of 2, 4, 8, 10, 12, 14,

16, 18, 20, and 22 bit. The author have tried the size beyond that

and it just doesn’t run at all because this prime number generator

have the time complexity of 𝑂(2𝑛). But in this research, this fact

will be ignored because we only do the observation on the RSA

key cracking.

The author have made the code to generate prime numbers in

various bit sizes. Below is the implementation of the code:

https://www.freecodecamp.org/news/big-o-cheat-sheet-time-complexity-chart/
https://www.freecodecamp.org/news/big-o-cheat-sheet-time-complexity-chart/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

#define boolean unsigned char
#define true 1
#define false 0

#include <stdio.h>
#include <math.h>
#include “dinlist.h”

unsigned long long int power(unsigned long long int x, unsigned long long int y) {
 unsigned long long int temp;

 if (y == 0)
 return 1;

 temp = power(x, y / 2);
 if (y % 2 == 0)
 return temp * temp;

 else

 return x * temp * temp;
}

int main() {

 unsigned long long int maxPrime;

 boolean prime;
 dinList primes;
 primes.list = malloc(sizeof(unsigned long long int));

 primes.size = 0;

 printf(“Enter the prime number bit size: “);
 scanf(“%lld”, &maxPrime);

 while (maxPrime >= 64) {
 printf(“Please enter below 64 bit (it goes beyond C’s capability)\n”);

 printf(“Enter the prime number bit size: “);
 scanf(“%lld”, &maxPrime);

 }
 maxPrime = power(2, maxPrime);

 for (int i = 2; i < maxPrime; i++) {
 prime = true;

 if (i > 2) {
 for (int j = 2; j < i; j++) {

 if (i % j == 0) {
 prime = false;

 break;
 }

 }

 }

 if (prime) {
 append(&primes, i);
 }
 }

 FILE *fptr;
 fptr = fopen(“prime.txt”, “w”);
 for (int i = 0; i < primes.size; i++) {

 fprintf(fptr, “%lld “, primes.list[i]);

 }
 fclose(fptr);
}

Firstly, the code will ask the user about the max bit size of the

prime. After entering the size, then the code will generate prime

numbers from the smallest prime up to the highest prime in that

bit size range. Note that the author limits the size in the 64 bit

mark because the maximum size of an unsigned long long

integers in C is 264 − 1. After that, the code will store them in a

dynamically-arranged list and write them into a textfile called

prime.txt. Below is the header file and the implementation file

of the dynamically-arranged list:
#ifndef DINLIST_H
#define DINLIST_H

#include <stdio.h>
#include <stdlib.h>

typedef struct dinList {
 long long int size;
 long long int* list;

} dinList;

void append(dinList *arr, long long int value);

#endif
#include "dinlist.h"

void append(dinList *arr, long long int value) {

 long long int *new_ptr = realloc(arr->list, sizeof *(arr->list) * (arr->size + 1u));
 if (new_ptr == NULL) {

 fprintf(stderr, "Out of memory\n");
 exit (EXIT_FAILURE);
 }

 arr->list = new_ptr;

 arr->list[arr->size] = value;
 arr->size++;
}

B. Generating and Predicting the RSA Key

Now that we already have the prime numbers, the next step is

to generate the RSA key. This process follow the exact steps that

is mentioned before. The author have already convert those steps

into a code and below is the implementation of it:

#define boolean unsigned char
#define true 1
#define false 0

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "dinlist.h"

int ctoi(char letter) {

 if (letter == '0') {
 return 0;

 }
 else if (letter == '1') {
 return 1;

 }

 else if (letter == '2') {
 return 2;
 }
 else if (letter == '3') {

 return 3;

 }
 else if (letter == '4') {
 return 4;

 }
 else if (letter == '5') {

 return 5;
 }

 else if (letter == '6') {
 return 6;

 }
 else if (letter == '7') {

 return 7;
 }
 else if (letter == '8') {
 return 8;
 }

 else if (letter == '9') {
 return 9;

 }
}

unsigned long long int gcdExtended(unsigned long long int a, unsigned long long int b, unsigned

long long int* x, unsigned long long int* y) {

 if (a == 0) {

 *x = 0, *y = 1;
 return b;
 }
 unsigned long long int x1, y1;

 unsigned long long int gcd = gcdExtended(b % a, a, &x1, &y1);
 *x = y1 - (b / a) * x1;
 *y = x1;
 return gcd;

}

unsigned long long int modInverse(unsigned long long int ra, unsigned long long int rb) {
 srand(time(NULL));

 unsigned long long int rc, sa = 1, sb = 0, sc, i = 0;
 if (rb > 1) do {
 rc = ra % rb;

 sc = sa - (ra / rb) * sb;

 sa = sb, sb = sc;
 ra = rb, rb = rc;

 } while (++i, rc);
 sa *= (i *= ra == 1) != 0;

 sa += (i & 1) * sb;
 return sa;
}

boolean coprime(unsigned long long int num1, unsigned long long int num2) {
 unsigned long long int min, count;

 boolean flag = true;

 min = num1 < num2 ? num1 : num2;

 for(count = 2; count <= min; count++) {
 if(num1 % count == 0 && num2 % count == 0) {
 flag = false;

 break;

 }
 }
 return flag;
}

unsigned long long int find_coprime(unsigned long long int m) {
 for (unsigned long long int a = m/2; a > 2; a--) {
 if (coprime(a, m)) {

 return a;
 }

 }
}

int main() {
 FILE *fptr;
 dinList primes;

 primes.list = malloc(sizeof(unsigned long long int));

 primes.size = 0;
 char ch;

 unsigned long long int temp = 0;
 fptr = fopen("prime.txt", "r");

 do {
 ch = fgetc(fptr);
 if (ch != ' ') {
 temp = temp*10 + ctoi(ch);

 }
 else {

 append(&primes, temp);
 temp = 0;

 }
 } while (ch != EOF);
 fclose(fptr);

 srand(time(NULL));
 unsigned long long int p = primes.list[rand() % primes.size];
 unsigned long long int q = primes.list[rand() % primes.size];
 unsigned long long int n = (unsigned long long int) (p * q);

 unsigned long long int m = (unsigned long long int) ((p - 1) * (q - 1));

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

 printf("p: %lld\n", p);
 printf("q: %lld\n", q);
 printf("n: %lld\n", n);

 printf("m: %lld\n", m);
 printf("Now the code will generate a public key based on the value of \'m\'\n");
 printf("Please wait\n\n");

 unsigned long long int publicKey = find_coprime(m);

 unsigned long long int privateKey = modInverse(publicKey, m);

 printf("These are the random generated RSA components\n");
 printf("p: %lld\n", p);
 printf("q: %lld\n", q);

 printf("n: %lld\n", n);

 printf("m: %lld\n", m);
 printf("Public Key: %lld\n", publicKey);
 printf("Private Key: %lld\n\n", privateKey);

 printf("Now the code will begin to brute force the encryption only using the \'n\' value

and the public key\n");
 printf("Please wait\n\n");

 boolean found = false;
 unsigned long long int i = 0, j;

 unsigned long long int privateKeyGuess;

 clock_t start = clock();
 while (i < primes.size && !found) {

 j = 0;
 while (j < primes.size && !found) {

 if ((unsigned long long int) (primes.list[i] * primes.list[j]) == n) {
 unsigned long long int mGuess = (unsigned long long int) ((primes.list[i] -
1) * (primes.list[j] - 1));
 if (find_coprime(mGuess) == publicKey) {
 privateKeyGuess = modInverse(publicKey, mGuess);

 found = true;
 }

 }
 j++;

 }
 i++;

 }

 clock_t stop = clock();

 double timeTaken = (double)(stop - start) / CLOCKS_PER_SEC;

 i--;
 j--;

 printf("Brute force completed!\n");
 printf("Time taken: %f\n", timeTaken);
 printf("Guessed p and q value: %lld and %lld\n", primes.list[i], primes.list[j]);

 printf("Guessed private key: %lld\n", privateKeyGuess);

}

First, the code reads the prime.txt that is generated before

using the previous code and convert them into integers with the

ctoi function. Then the code will store them into a dynamically-

arranged list. After that, two random numbers from 0 upto the

length of the list will be generated and the code will use those

two numbers as indices to read from the list of prime numbers

and store the result in variables, namely p and q. After that, the

code will compute the multiplication of those two numbers and

store it in the n variable. Then, it will calculate the Euler’s totient

function of n and store it in the m variable. Next, the code will

search for a number that is coprime with m and declare it as the

public key and lastly, it will find a number that when multiplied

with the public key, the result will be congruent to 1 modulo m

and declare it as the private key.

Now that we have the randomly generated RSA components,

it is time to continue to the last process and that is predicting the

private key only using the n value and the public key. In this

process, the author use the list of prime numbers that is

generated before and iterate through them until the right

combination of two prime numbers is found. Then it will display

the guessed private key and the time taken to guess it as shown

below in the following figure:

Figure 2. The result of guessing RSA private key on 20 bit sized prime

numbers

Source: author’s documentation

IV. RESULT

The author will only calculate the time complexity of the RSA

cracking in the size of 2, 4, 8, 10, 12, 14, 16, 18, and 20 bit. To
increase the accuracy of the outcome, five measurement were
taken for each size then the author compare the average time
taken. This is the mapping of the output in the form of table and
graph:

Table 1. Time taken to guess RSA private key with brute

force for each prime number size

Size

(bit)

Time taken (second) Average

(second) First Second Third Fourth Fifth

2 2×10-6 3×10-6 2×10-6 3×10-6 2×10-6 2.4×10-6
4 3×10-6 2×10-6 3×10-6 2×10-6 2×10-6 2.4×10-6
6 4×10-6 3×10-6 6×10-6 6×10-6 6×10-6 5×10-6

8 3.3×10-5 2.1×10-5 4.7×10-5 2.3×10-5 3.4×10-5 3.16×10-5

10 8.43×10-4 3.15×10-4 2.64×10-4 2.78×10-4 8.68×10-4 5.14×10-4

12 9.32×10-3 7.76×10-3 1.1×10-2 7.09×10-3 1.13×10-2 9.29×10-3

14 7.22×10-2 6.06×10-2 7.82×10-2 1.4×10-1 8.95×10-2 8.81×10-2

16 2.02 1.7 7.52×10-1 1.64 1.44 1.51

18 14.36 17.72 29.59 21.59 44.76 25.6

20 219.83 307.86 437.94 223.53 311.04 300.04

Figure 3. Graph between the maximum size of the number in bit and the time

taken to guess the private key with brute force

Source: author’s documentation

If the observation is done directly from the table and the
graph, there isn’t much information to extract because
apparently C language is not really good at capturing the time
taken to compute something really quick. Which is why the time

taken for the smaller bit do not differ from each other. However
on the bigger side of the bit, the time taken changes significantly.
Then after 20 bit, the time it takes is longer than 6 hour because
the author have tried leave the code running overnight and the
private key was still not found in the next morning.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Because the information from the table and the graph isn’t
enough to conclude the time complexity, the inspection will be
done on the code. If we look at the code, there are two loops in
the section where the code start to guess the two large prime
numbers.
 clock_t start = clock();

 while (i < primes.size && !found) {
 j = 0;
 while (j < primes.size && !found) {
 if ((unsigned long long int) (primes.list[i] * primes.list[j]) == n) {

 unsigned long long int mGuess = (unsigned long long int) ((primes.list[i] -

1) * (primes.list[j] - 1));
 if (find_coprime(mGuess) == publicKey) {

 privateKeyGuess = modInverse(publicKey, mGuess);

 found = true;
 }

 }
 j++;

 }
 i++;
 }
 clock_t stop = clock();

 double timeTaken = (double)(stop - start) / CLOCKS_PER_SEC;

Those two loops is used to iterate the list of prime numbers and

multiply them until the right combination of prime number is
found. So in this section, the time complexity is 𝑂(𝑛2) where 𝑛
is the amount of prime numbers on that particular bit size. After

that, if the right two prime numbers is already found, it will
calculate the Euler’s totient function of the multiplication
between those two numebrs and it will continue to search for the
coprime of it using the find_coprime function and that is another

𝑂(𝑛2). Lastly, if the coprime is finally found, it will compute
the inverse modulo of the coprime with the extended Euclidean

algorithm with the time complexity of 𝑂(log𝑛).
Now that every section is already covered, it is time to

compute the total time complexity with the following equation:

𝑇(𝑛) = 𝑛2 × 𝑛2 + 𝑛 log𝑛
𝑇(𝑛) = 𝑛4 + 𝑛 log 𝑛 = 𝑂(𝑛4)

We have found out that the time complexity of cracking an RSA

private key is 𝑂(𝑛4), where 𝑛 is the amount of prime numbers
in that bit range. However, we want the time complexity with
respect to the bit size of the number. So we have to calculate
how many prime number there are with respect to the bit size.

Table 2. The amount of prime numbers according to their bit

size

Size (bit) Amount of prime numbers

2 2

4 6

6 18

8 54

10 172

12 564

14 1900

16 6542

18 23000

20 82025

Based on the table, a conclusion can be made that for each two
bit increase in size, the amount of prime numbers will increase
approximately three times as before. With that being said, we

can write the connection between 𝑛, the amount of prime
numbers in the given bit size, and 𝑏, the bit size.

𝑛(𝑏) ≈ 2 × 3𝑏

Next, plug the value of 𝑛(𝑏) into 𝑂(𝑛4).

𝑂(𝑛4) = 𝑂((2 × 3𝑏)4) = 𝑂(1296𝑏)

So there it is, our final answer. The time complexity it takes to
crack an RSA private key using brute force method is 𝑂(𝑘𝑛)
where 𝑘 is a constant and 𝑛 is the maximum bit size of the
number.

V. CONCLUSION

From the research that we did, we got the exact time

complexity of guessing RSA private key with brute force and

that is a stupendous 𝑂(𝑘𝑛) with 𝑛 being the maximum bit size

of the prime numbers. However, the brute force method that is

used in this research is a pure brute force without any

optimization. So 𝑂(𝑘𝑛) is the highest time complexity possible

and could get lower if the the cracking is done with better

performance enhancement.

VI. SUGGESTION

The author’s suggestion for future researchers that want to

continue this topic is to do this research in a more high-end

hardware so that the code can calculate the time taken for prime

numbers with the size of more that 20 bit because this is a really

performance-taxing observation.

VII. ACKNOWLEDGMENT

The author extends heartfelt gratitude to Allah, the Most

Merciful and Compassionate, for providing the strength,

wisdom, and perseverance to undertake this scholarly journey.

Acknowledgment is due to the esteemed lecturer, Dr. Ir. Rinaldi

Munir, M.T. and Monterico Adrian, S.T., M.T., whose

invaluable guidance, insightful feedback, and unwavering

support have profoundly shaped the quality of this work. The

author is profoundly grateful to their family for the unwavering

love and encouragement that served as pillars of strength, and to

friends, whose inspiration and camaraderie enriched the entire

process. The author recognizes and appreciates the collective

contributions, big and small, from everyone involved, and hopes

that this work, guided by divine grace, contributes positively to

the broader realm of knowledge.

REFERENCES

[1] Munir, Rinaldi. (2020). "Teori Bilangan (Bagian 3)".

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/16-

Teori-Bilangan-Bagian3-2023.pdf (accessed on 29th November 2023)

[2] C. Sun, “Comparative Study of RSA Encryption and Quantum

Encryption,” in Theoretical and Natural Science, vol. 2, no. 1, pp. 121–

125, Feb. 2023. [Online]. Available:

https://tns.ewapublishing.org/media/1d174a4cfbe645db8ed7cd81d1948e

d3_A8qx0UX.pdf (accessed on 30 th November 2023)

[3] T. Nguyen, “Privacy preserving using extended euclidean – algorithm

applied to RSA,” in Tạp chí Khoa học Đại học Sư phạm Thành phố Hồ

Chí Minh, vol. 1, no. 2, pp. 53-63, Apr. 2023. [Online]. Available:

https://sj.hpu2.edu.vn/index.php/journal/article/download/185/124

(accessed on 30 th November 2023)

[4] M. M. Sudershan, S. V. Pydakula, and A. Priya, “File Encryption and

Decryption using AES and RSA Algorithm,” in International Journal of

Scientific Research in Computer Science, Engineering and Information

Technology, vol. 10, no. 2, pp. 11-14, Mar. 2023. [Online]. Available:

https://sj.hpu2.edu.vn/index.php/journal/article/download/185/124

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

https://ijsrcseit.com/paper/CSEIT2390130.pdf (accessed on 2nd December

2023)

ATTACHMENT

Source code used in this research and the demo video:

https://github.com/Nerggg/RSA-Crack-Simulation

STATEMENT

I, the individual signing below, affirm that the content
presented in this document is an original creation authored by

me. It is not a derivative work, translation of another
document, or a product of plagiarism.

Bandung, 9th December 2023

Ikhwan Al Hakim, 13522147

https://ijsrcseit.com/paper/CSEIT2390130.pdf

