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Abstract—This research paper investigates the time complexity 

of brute force attacks on RSA encryption, a pivotal public-key 

cryptographic algorithm widely used for securing digital 

communication. Focusing on the difficulty of factoring the product 

of large prime numbers, the study employs mathematical models 

and simulations to analyze the impact of key bit size on the 

feasibility of brute force decryption. The examination includes 

various key sizes, ranging from 2 bit to 20 bit. 
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I.   INTRODUCTION 

RSA encryption is widely regarded as one of the most secure 

encryption algorithms in use today. Developed by Ron Rivest, 

Adi Shamir, and Leonard Adleman in 1977, RSA (Rivest-

Shamir-Adleman) relies on the mathematical complexity of 

factoring the product of two large prime numbers, making it 

resistant to attacks by classical computers. The security of RSA 

encryption is based on the assumption that factoring the product 

of two large primes is a computationally infeasible task. The 

algorithm plays a crucial role in securing digital communication, 

including online transactions, data transmission, and secure 

communication protocols. Its strength lies in the difficulty of 

deducing the private key from the public key, ensuring a robust 

level of security for sensitive information.  

While RSA encryption has long been considered highly 

secure, recent advancements in computing have raised concerns 

about its long-term resilience. The algorithm’s strength relies on 

the difficulty of factoring the product of two large prime 

numbers, a task that becomes increasingly computationally 

intensive as the size of the primes grows. While it is currently 

deemed practically impossible for classical computers to 

efficiently factor the product within a reasonable timeframe, the 

rise of quantum computing poses a potential threat. Quantum 

computers, leveraging principles of quantum mechanics, have 

the potential to exponentially speed up certain calculations, 

including factoring large numbers. This development could, in 

theory, undermine the security of RSA encryption by efficiently 

solving the underlying mathematical problem.  

For that reason, this paper is made to calculate what is the 

exact time complexity to brute force an RSA encryption. Brute 

force is a straightforward and exhaustive approach to problem-

solving that relies on systematically trying all possible solutions 

until the correct one is found. It is a general problem-solving 

technique that can be applied to a wide range of problems, 

particularly in the fields of computer science, cryptography, and 

mathematics. 

In the context of algorithms and computer science, a brute 

force algorithm typically involves checking all possible 

combinations or solutions to a problem without using any 

optimization or heuristics to narrow down the search space. 

While this method is simple and guarantees a solution, it can be 

highly inefficient, especially for problems with large solution 

spaces, as it requires evaluating a vast number of possibilities. 

 

II.  THEORETICAL BASIS 

A. RSA Encryption 

RSA (Rivest-Shamir-Adleman) is a widely used public-key 

cryptosystem that enables secure communication over an 

insecure channel. It was invented by Ron Rivest, Adi Shamir, 

and Leonard Adleman in 1977 and remains one of the most 

highly secure encryption algorithms. 

The RSA algorithm involves two keys: a public key and a 

private key. These keys are mathematically related but 

computationally infeasible to derive from one another. The 

public key can be freely distributed, while the private key must 

be kept secret. 

These are the processes to generate an RSA key: 

1. Choose two large prime numbers, namely 𝑝 and 𝑞. 

2. Compute the multiplication between them, let 𝑛 =
𝑝 × 𝑞. 

3. Calculate 𝜙(𝑛) = (𝑝 − 1) × (𝑞 − 1), where 𝜙 is the 

Euler’s totient function. 

4. Choose a number 𝑒 that is coprime with 𝜙(𝑛).  
5. Compute a number 𝑑 such that 𝑑𝑒 ≡ 1 (mod 𝜙(𝑛)). 

The public key is 𝑒 and the private key is 𝑑. 

 

B. Time Complexity 
Time complexity is a key parameter used to evaluate the 

computational efficiency of algorithms. It allows researchers 
and practitioners to make informed decisions about algorithm 

selection based on the expected behavior of the algorithm as the 
input size increases. The notation employed for time 
complexity, commonly known as Big O notation, provides a 
concise representation of an algorithm’s worst-case time 
complexity. By expressing the upper bound of an algorithm’s 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 
 

running time in terms of a mathematical function, Big O 
notation facilitates a high-level understanding of an algorithm’s 
scalability. 

Time complexity is formally defined as the function 𝑇(𝑛), 
representing the maximum amount of computational time 

required by an algorithm for an input of size 𝑛. In Big O 
notation, denoted as 𝑂(𝑓(𝑛)), the focus is on characterizing the 

upper bound of 𝑇(𝑛) as 𝑛 approaches infinity. The notation 
𝑂(𝑓(𝑛)) implies that the running time of the algorithm does not 

grow faster than a constant multiple of 𝑓(𝑛) for sufficiently 
large 𝑛. 
Below are the example of Big O notation and their respective 
graph mapping: 

1. Constant Time (𝑂(1)): The running time of the 
algorithm remains constant regardless of the input size. 
Simple operations like accessing an element in an array 
fall into this category. 

2. Linear Time (𝑂(𝑛)): The running time of the algorithm 
grows linearly with the input size. Example of this 
category is iterating through an entire element of an 

array or a list. 
3. Logarithmic Time (𝑂(log 𝑛)): The running time of the 

algorithm grows logarithmically with the input size. 

4. Linearithmic Time (𝑂(𝑛 log𝑛)): This time complexity 
is common in some efficient sorting algorithms like 
Merge Sort and Heap Sort. 

5. Quadratic Time (𝑂(𝑛2)): The running time is 
proportional to the square of the input size. This is often 
seen in nested loops. 

6. Exponential Time (𝑂(𝑘𝑛)): The running time grows 
exponentially with the input size. Algorithms with this 
complexity are generally impractical for large inputs. 

7. Factorial Time (𝑂(𝑛!)): This time complexity is 

relatively uncommon in practical algorithms due to its 
rapid growth rate. In most cases, factorial time 
complexity is associated with naive or brute-force 
algorithms that exhaustively generate all possible 
permutations or combinations of a set. 
 

 
Figure 1. Time Complexity Graph 

Source: https://www.freecodecamp.org/news/big-o-cheat-sheet-time-

complexity-chart/ 

 

C. Brute Force 

Brute force is a deterministic and exhaustive technique 

utilized across diverse domains to systematically explore and 

evaluate all possible options until the correct solution is 

discovered. One prominent application of brute force is in the 

realm of cybersecurity, particularly in password cracking 

attempts. In this context, attackers employ brute force to 

systematically test every conceivable password combination in 

an effort to gain unauthorized access to a system. The success of 

such attacks hinges on factors like the strength of passwords and 

the computational resources available to the attacker. While 

brute force might be a less sophisticated approach compared to 

more intricate hacking techniques, it can prove effective, 

especially when dealing with weak or easily guessable 

passwords. 

Cryptography also frequently encounters brute force, 

particularly in decryption attempts. In cryptographic systems, a 

brute force attack involves systematically trying all possible 

decryption keys until the correct one is found. The efficacy of 

this method depends on the encryption algorithm’s complexity 

and the length of the encryption key. Robust encryption 

algorithms with longer keys significantly raise the difficulty 

level for successfully executing a brute force attack, rendering 

them more resilient against unauthorized decryption attempts. 

Cryptographers continually strive to develop encryption 

methods that withstand brute force attacks, emphasizing the 

importance of key length and algorithmic intricacy in ensuring 

data security. 

While brute force methods offer a straightforward and 

conceptually simple approach to problem-solving, they are not 

always the most efficient or practical solutions. In certain 

scenarios, the solution space may be vast, leading to a time-

consuming and resource-intensive process. In computer science, 

brute force algorithms may be employed to solve problems by 

systematically considering all potential solutions. However, 

more optimized algorithms, leveraging specific characteristics 

of the problem, are often favored for their efficiency, 

particularly in large-scale or complex problem domains. Thus, 

while brute force remains a viable strategy in certain contexts, 

its limitations underscore the importance of developing and 

implementing more sophisticated methods to tackle intricate 

challenges effectively. 

 

III.   METHODOLOGY 

Before the author explain any of the method used in this 
research, it should be noted that the experiment is done in the 
following hardware specifications: 

• Processor: AMD Ryzen 7 5800HS 3.2GHz 

• RAM: 16 GB 
 

A. Generating the Prime Numbers 

First, there is the need to define the bit size of the prime 

numbers. Because the experiment is done in a small 

environment and a not-so-good hardware, the author only able 

to generate the prime numbers in the size of  2, 4, 8, 10, 12, 14, 

16, 18, 20, and 22 bit. The author have tried the size beyond that 

and it just doesn’t run at all because this prime number generator 

have the time complexity of 𝑂(2𝑛). But in this research, this fact 

will be ignored because we only do the observation on the RSA 

key cracking. 

The author have made the code to generate prime numbers in 

various bit sizes. Below is the implementation of the code: 

https://www.freecodecamp.org/news/big-o-cheat-sheet-time-complexity-chart/
https://www.freecodecamp.org/news/big-o-cheat-sheet-time-complexity-chart/
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#define boolean unsigned char 
#define true 1 
#define false 0 
 

#include <stdio.h> 
#include <math.h> 
#include “dinlist.h” 
 

unsigned long long int power(unsigned long long int x, unsigned long long int y) { 
    unsigned long long int temp; 

    if (y == 0) 
        return 1; 

    temp = power(x, y / 2); 
    if (y % 2 == 0) 
        return temp * temp; 

    else 

        return x * temp * temp; 
} 
 
int main() { 

    unsigned long long int maxPrime; 

    boolean prime; 
    dinList primes; 
    primes.list = malloc(sizeof(unsigned long long int)); 

    primes.size = 0; 
 

    printf(“Enter the prime number bit size: “); 
    scanf(“%lld”, &maxPrime); 

    while (maxPrime >= 64) { 
        printf(“Please enter below 64 bit (it goes beyond C’s capability)\n”); 

        printf(“Enter the prime number bit size: “); 
        scanf(“%lld”, &maxPrime); 

    } 
    maxPrime = power(2, maxPrime); 
 
    for (int i = 2; i < maxPrime; i++) { 
        prime = true; 

        if (i > 2) { 
            for (int j = 2; j < i; j++) { 

                if (i % j == 0) { 
                    prime = false; 

                    break; 
                } 

            } 

        } 

        if (prime) { 
            append(&primes, i); 
        }    
    } 

 
    FILE *fptr; 
    fptr = fopen(“prime.txt”, “w”); 
    for (int i = 0; i < primes.size; i++) { 

        fprintf(fptr, “%lld “, primes.list[i]); 

    } 
    fclose(fptr); 
} 

 

Firstly, the code will ask the user about the max bit size of the 

prime. After entering the size, then the code will generate prime 

numbers from the smallest prime up to the highest prime in that 

bit size range. Note that the author limits the size in the 64 bit 

mark because the maximum size of an unsigned long long 

integers in C is 264 − 1. After that, the code will store them in a 

dynamically-arranged list and write them into a textfile called 

prime.txt. Below is the header file and the implementation file 

of the dynamically-arranged list: 
#ifndef DINLIST_H 
#define DINLIST_H 

 
#include <stdio.h> 
#include <stdlib.h> 

 

typedef struct dinList { 
  long long int size; 
  long long int* list; 

} dinList; 
 

void append(dinList *arr, long long int value); 
 
#endif 
#include "dinlist.h" 

 

void append(dinList *arr, long long int value) { 

  long long int *new_ptr = realloc(arr->list, sizeof *(arr->list) * (arr->size + 1u)); 
  if (new_ptr == NULL) { 

    fprintf(stderr, "Out of memory\n"); 
    exit (EXIT_FAILURE); 
  } 

  arr->list = new_ptr; 

  arr->list[arr->size] = value; 
  arr->size++; 
} 

 

B. Generating and Predicting the RSA Key 

Now that we already have the prime numbers, the next step is 

to generate the RSA key. This process follow the exact steps that 

is mentioned before. The author have already convert those steps 

into a code and below is the implementation of it: 

#define boolean unsigned char 
#define true 1 
#define false 0 
 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include "dinlist.h" 

 
int ctoi(char letter) { 

    if (letter == '0') { 
        return 0; 

    } 
    else if (letter == '1') { 
        return 1; 

    } 

    else if (letter == '2') { 
        return 2; 
    } 
    else if (letter == '3') { 

        return 3; 

    } 
    else if (letter == '4') { 
        return 4; 

    } 
    else if (letter == '5') { 

        return 5; 
    } 

    else if (letter == '6') { 
        return 6; 

    } 
    else if (letter == '7') { 

        return 7; 
    } 
    else if (letter == '8') { 
        return 8; 
    } 

    else if (letter == '9') { 
        return 9; 

    } 
} 

 
unsigned long long int gcdExtended(unsigned long long int a, unsigned long long int b, unsigned  

long long int* x, unsigned long long int* y) {  

    if (a == 0) {  

        *x = 0, *y = 1;  
        return b;  
    }  
    unsigned long long int x1, y1; 

    unsigned long long int gcd = gcdExtended(b % a, a, &x1, &y1);  
    *x = y1 - (b / a) * x1;  
    *y = x1;  
    return gcd;  

} 

 
unsigned long long int modInverse(unsigned long long int ra, unsigned long long int rb) {  
    srand(time(NULL)); 

    unsigned long long int rc, sa = 1, sb = 0, sc, i = 0; 
    if (rb > 1) do { 
            rc = ra % rb; 

            sc = sa - (ra / rb) * sb; 

            sa = sb, sb = sc; 
            ra = rb, rb = rc; 

        } while (++i, rc); 
    sa *= (i *= ra == 1) != 0; 

    sa += (i & 1) * sb; 
    return sa; 
}   
 

boolean coprime(unsigned long long int num1, unsigned long long int num2) {   
    unsigned long long int min, count; 

    boolean flag = true;   

    min = num1 < num2 ? num1 : num2;   

    for(count = 2; count <= min; count++) {   
        if(num1 % count == 0 && num2 % count == 0) {   
            flag = false;   

            break;   

        }   
    }   
    return flag;   
}  

 

unsigned long long int find_coprime(unsigned long long int m) { 
    for (unsigned long long int a = m/2; a > 2; a--) { 
        if (coprime(a, m)) { 

            return a; 
        } 

    } 
} 

 
int main() { 
    FILE *fptr; 
    dinList primes; 

    primes.list = malloc(sizeof(unsigned long long int)); 

    primes.size = 0; 
    char ch; 

    unsigned long long int temp = 0; 
    fptr = fopen("prime.txt", "r"); 

    do { 
        ch = fgetc(fptr); 
        if (ch != ' ') { 
            temp = temp*10 + ctoi(ch); 

        } 
        else { 

            append(&primes, temp); 
            temp = 0; 

        } 
    } while (ch != EOF); 
    fclose(fptr); 

 

    srand(time(NULL)); 
    unsigned long long int p = primes.list[rand() % primes.size]; 
    unsigned long long int q = primes.list[rand() % primes.size]; 
    unsigned long long int n = (unsigned long long int) (p * q); 

    unsigned long long int m = (unsigned long long int) ((p - 1) * (q - 1)); 
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    printf("p: %lld\n", p); 
    printf("q: %lld\n", q); 
    printf("n: %lld\n", n); 

    printf("m: %lld\n", m); 
    printf("Now the code will generate a public key based on the value of \'m\'\n"); 
    printf("Please wait\n\n"); 
 

    unsigned long long int publicKey = find_coprime(m); 
 

    unsigned long long int privateKey = modInverse(publicKey, m); 
 

    printf("These are the random generated RSA components\n"); 
    printf("p: %lld\n", p); 
    printf("q: %lld\n", q); 

    printf("n: %lld\n", n); 

    printf("m: %lld\n", m); 
    printf("Public Key: %lld\n", publicKey); 
    printf("Private Key: %lld\n\n", privateKey); 
 

    printf("Now the code will begin to brute force the encryption only using the \'n\' value  

and the public key\n"); 
    printf("Please wait\n\n"); 
  

    boolean found = false; 
    unsigned long long int i = 0, j; 

    unsigned long long int privateKeyGuess; 
 

    clock_t start = clock(); 
    while (i < primes.size && !found) { 

        j = 0; 
        while (j < primes.size && !found) { 

            if ((unsigned long long int) (primes.list[i] * primes.list[j]) == n) { 
                unsigned long long int mGuess = (unsigned long long int) ((primes.list[i] -  
1) * (primes.list[j] - 1)); 
                if (find_coprime(mGuess) == publicKey) { 
                    privateKeyGuess = modInverse(publicKey, mGuess); 

                    found = true; 
                } 

            } 
            j++; 

        } 
        i++; 

    } 

    clock_t stop = clock(); 

    double timeTaken = (double)(stop - start) / CLOCKS_PER_SEC; 
 
    i--; 
    j--; 

 
    printf("Brute force completed!\n"); 
    printf("Time taken: %f\n", timeTaken); 
    printf("Guessed p and q value: %lld and %lld\n", primes.list[i], primes.list[j]); 

    printf("Guessed private key: %lld\n", privateKeyGuess); 

} 
 

First, the code reads the prime.txt that is generated before 

using the previous code and convert them into integers with the 

ctoi function. Then the code will store them into a dynamically-

arranged list. After that, two random numbers from 0 upto the 

length of the list will be generated and the code will use those 

two numbers as indices to read from the list of prime numbers 

and store the result in variables, namely p and q. After that, the 

code will compute the multiplication of those two numbers and 

store it in the n variable. Then, it will calculate the Euler’s totient 

function of n and store it in the m variable. Next, the code will 

search for a number that is coprime with m and declare it as the 

public key and lastly, it will find a number that when multiplied 

with the public key, the result will be congruent to 1 modulo m 

and declare it as the private key. 

Now that we have the randomly generated RSA components, 

it is time to continue to the last process and that is predicting the 

private key only using the n value and the public key. In this 

process, the author use the list of prime numbers that is 

generated before and iterate through them until the right 

combination of two prime numbers is found. Then it will display 

the guessed private key and the time taken to guess it as shown 

below in the following figure: 

 
Figure 2. The result of guessing RSA private key on 20 bit sized prime 

numbers 

Source: author’s documentation 

 

IV.   RESULT 

The author will only calculate the time complexity of the RSA 

cracking in the size of 2, 4, 8, 10, 12, 14, 16, 18, and 20 bit. To 
increase the accuracy of the outcome, five measurement were 
taken for each size then the author compare the average time 
taken. This is the mapping of the output in the form of table and 
graph: 

 
Table 1. Time taken to guess  RSA private key with brute 

force for each prime number size 

Size 

(bit) 

Time taken (second) Average 

(second) First Second Third Fourth Fifth 

2 2×10-6 3×10-6 2×10-6 3×10-6 2×10-6 2.4×10-6 
4 3×10-6 2×10-6 3×10-6 2×10-6 2×10-6 2.4×10-6 
6 4×10-6 3×10-6 6×10-6 6×10-6 6×10-6 5×10-6 

8 3.3×10-5 2.1×10-5 4.7×10-5 2.3×10-5 3.4×10-5 3.16×10-5 

10 8.43×10-4 3.15×10-4 2.64×10-4 2.78×10-4 8.68×10-4 5.14×10-4 

12 9.32×10-3 7.76×10-3 1.1×10-2 7.09×10-3 1.13×10-2 9.29×10-3 

14 7.22×10-2 6.06×10-2 7.82×10-2 1.4×10-1 8.95×10-2 8.81×10-2 

16 2.02 1.7 7.52×10-1 1.64 1.44 1.51 

18 14.36 17.72 29.59 21.59 44.76 25.6 

20 219.83 307.86 437.94 223.53 311.04 300.04 

 

 
Figure 3. Graph between the maximum size of the number in bit and the time 

taken to guess the private key with brute force 

Source: author’s documentation 

 

If the observation is done directly from the table and the 
graph, there isn’t much information to extract because 
apparently C language is not really good at capturing the time 
taken to compute something really quick. Which is why the time 

taken for the smaller bit do not differ from each other. However 
on the bigger side of the bit, the time taken changes significantly. 
Then after 20 bit, the time it takes is longer than 6 hour because 
the author have tried leave the code running overnight and the 
private key was still not found in the next morning. 
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Because the information from the table and the graph isn’t 
enough to conclude the time complexity, the inspection will be 
done on the code. If we look at the code, there are two loops in 
the section where the code start to guess the two large prime 
numbers.  
    clock_t start = clock(); 

    while (i < primes.size && !found) { 
        j = 0; 
        while (j < primes.size && !found) { 
            if ((unsigned long long int) (primes.list[i] * primes.list[j]) == n) { 

                unsigned long long int mGuess = (unsigned long long int) ((primes.list[i] -  

1) * (primes.list[j] - 1)); 
                if (find_coprime(mGuess) == publicKey) { 

                    privateKeyGuess = modInverse(publicKey, mGuess); 

                    found = true; 
                } 

            } 
            j++; 

        } 
        i++; 
    } 
    clock_t stop = clock(); 

    double timeTaken = (double)(stop - start) / CLOCKS_PER_SEC; 
 
Those two loops is used to iterate the list of prime numbers and 

multiply them until the right combination of prime number is 
found. So in this section, the time complexity is 𝑂(𝑛2) where 𝑛 
is the amount of prime numbers on that particular bit size. After 

that, if the right two prime numbers is already found, it will 
calculate the Euler’s totient function of the multiplication 
between those two numebrs and it will continue to search for the 
coprime of it using the find_coprime function and that is another 

𝑂(𝑛2). Lastly, if the coprime is finally found, it will compute 
the inverse modulo of the coprime with the extended Euclidean 

algorithm with the time complexity of 𝑂(log𝑛). 
Now that every section is already covered, it is time to 

compute the total time complexity with the following equation: 
 

𝑇(𝑛) = 𝑛2 × 𝑛2 + 𝑛 log𝑛 
𝑇(𝑛) = 𝑛4 + 𝑛 log 𝑛 = 𝑂(𝑛4) 

 
We have found out that the time complexity of cracking an RSA 

private key is 𝑂(𝑛4), where 𝑛 is the amount of prime numbers 
in that bit range. However, we want the time complexity with 
respect to the bit size of the number. So we have to calculate 
how many prime number there are with respect to the bit size. 

 

Table 2. The amount of prime numbers according to their bit 

size 

Size (bit) Amount of prime numbers 

2 2 

4 6 

6 18 

8 54 

10 172 

12 564 

14 1900 

16 6542 

18 23000 

20 82025 

 

Based on the table, a conclusion can be made that for each two 
bit increase in size, the amount of prime numbers will increase 
approximately three times as before. With that being said, we 

can write the connection between 𝑛, the amount of prime 
numbers in the given bit size, and 𝑏, the bit size. 
 

𝑛(𝑏) ≈ 2 × 3𝑏 
 

Next, plug the value of 𝑛(𝑏) into 𝑂(𝑛4). 
 

𝑂(𝑛4) = 𝑂((2 × 3𝑏)4) = 𝑂(1296𝑏 ) 
 
So there it is, our final answer. The time complexity it takes to 
crack an RSA private key using brute force method is 𝑂(𝑘𝑛) 
where 𝑘 is a constant and 𝑛 is the maximum bit size of the 
number. 

 

V.   CONCLUSION 

From the research that we did, we got the exact time 

complexity of guessing RSA private key with brute force and 

that is a stupendous 𝑂(𝑘𝑛) with 𝑛 being the maximum bit size 

of the prime numbers. However, the brute force method that is 

used in this research is a pure brute force without any 

optimization. So 𝑂(𝑘𝑛) is the highest time complexity possible 

and could get lower if the the cracking is done with better 

performance enhancement. 

 

VI.   SUGGESTION 

The author’s suggestion for future researchers that want to 

continue this topic is to do this research in a more high-end 

hardware so that the code can calculate the time taken for prime 

numbers with the size of more that 20 bit because this is a really 

performance-taxing observation. 
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